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ABSTRACT 

In reliability growth models, systems undergo an improvement in perfor- 
mance during prototype testing, as design changes are made, and operating 
procedures and environment are modified.  In the learning-curve models, 
this improvement occurs continuously over time, and there is great in- 
terest in predicting the ultimate performance of the system, using only 
the epochs of the failures which occur early in the testing program. 
This paper constructs a general framework in which to analyze this prob- 
lem, including as special cases many different model variations that 
have previously been analyzed.  Numerical trials indicate the difficulty 
of using classical procedures to estimate ultimate performance; the 
maximum likelihood estimator is unstable for small testing intervals with 
a small number of systems on test, and is even inconsistent for a large 
number of systems.  Bayesian procedures are recommended' for implementa- 
tion, as they can use the data from any testing protocol. 
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A GENERAL FRAMEWORK FOR LEARNING CURVE 
RELIABILITY GROWTH MODELS 

by 

William S. Jewell 

1.  INTRODUCTION 

When complex systems are first produced and undergo development and 

testing prior to actual operational use, a learning curve  effect usually 

takes place, in which the initially high failure rate diminishes over time 

as the various causes of breakdown are identified and corrected through 

engineering design changes, environmental modification, operating pro- 

cedure changes, and so on.  This "shakedown" process is essential to the 

development of a robust system that can be routinely produced, installed, 

and operated with high reliability under long-duration, adverse-environment 

circumstances.  Because of the high development costs of such systems, it 

is clearly important to be able to estimate this reliability growth,  and, 

especially, to estimate the ultimate level of performance. 

A large variety of special-purpose growth models have already been 

proposed; [7] and [10] are convenient summaries.  For example, one group of 

models focuses upon the defeat-identification  process, assuming that each 

system failure gives the engineer a chance to rectify a newly-discovered 

cause of failure.  Most of these models are Markovian in nature; see, e.g., 

[2]| [3], [6],  The primary drawback of these models seems to be the need 

to specify an appropriate defect state space, and to estimate the related 

defect removal probabilities. 

A second method of modelling reliability growth might be called the 

structural parameter  approach.  Learning is assumed to occur only in 
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discrete, well-defined stages, with unknown failure parameters associated 

with each stage; only the number of failures in each stage is used to 

estimate these parameters.  If growth is assumed to take place at each 

stage, then this leads to a monotone estimation problem in which the 

many parameters are, by hypothesis, ordered [2], [21].  It is also possible 

to weaken this assumption to stochastically ordered parameters [15], [20]. 

The most serious criticism of this approach to reliability growth is 

that it gives very little predictive capability, since future learning 

is only loosely constrained. 

A third group of models requires strong assumptions about 

the general form of reliability growth, based upon past experiences with 

similar processes; then one estimates a relatively few free parameters 

using only failure epoch data. We will call this the learning curve 

approach, since it is closely related to deterministic models of produc- 

tion learning, developed by industrial engineers in the 50's. 

A large literature exists, mostly focused around special growth curve 

forms, such as the Duane model   [7], [10].  Many of the recent software 

reliability models [11], [18], [19] are also of this type. 

The objective of this paper is to present a general framework for 

constructing and estimating the parameters of learning-curve models, 

in particular, two important variations of the general form, the 

"as operated," and "as produced" models.  It is shown that, independent 

of the form of learning deemed appropriate, the type of model selected 

as well as the testing protocol used, the parameter estimation problems 

are mathematically very similar.  Preliminary numerical trials indicate 

that classical point estimators of the parameters may be misleading as 

to their accuracy; accordingly, we shall outline several possible 

r.' 
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Bayesian approaches to parameter estimation. Detailed results from our 

numerical simulation are then presented.  Our main conclusion is that 

most learning-curve testing protocols provide little of the parameter 

precision needed by manufacturers to make "early returns" predictions 

of ultimate reliability using traditional estimation methods. 

••'.;;•.;;•••.- 
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2.  FAILURE MODEL FORMULATION 

In develop'ng a general model of reliability growth, we must 

consider carefully the assumptions made about the underlying failure 

process.  First of all, by ignoring any specific information about the 

type  of failure (except to assure that this information is used in a 

positive, predictable way by the engineers to modify future performance), 

we restrict ourselves to observing point processes.     Figure 1 shows a 

single system on test, with various failure events ("glitches") in- 

dicated by asterisks.  Our objective is to develop a stochastic law 

governing the occurrence of these events; in reliability growth, we expect 

these events to occur less frequently, or to be more widely spaced, as 

time evolves from the test origin.  (Section 7 discusses results with 

several systems on test.) Because of the concerns expressed in [14], [16], 

a failure-rate-oriented model appears to be more appropriate than an 

interval-oriented one. 

hVH 
-* . 

t. 
dx 

Vi t, 

x 

t 

lifetimes 

point process 

failure epochs 

local time (or age) 

global (or clock) time 

FIGURE 1. Notation with Single System. 

To fix notation, let x ,x., be the successive random lifetimes 

(intervals between failures), and tL.t», be the corresponding failure 

event epochs;   clearly t 0 , and t. = x.. + x. + Xj  (j = 1,2, ) 

:• 
its actual value in some reali- * - * • A random variable is indicated with a tilde; 

- 
- 

zation is the same variable without a tilde. 
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Suppose we are formulating the stochastic law governing the j  lifetime. 

It is convenient to refer to a small interval of time,  dx , which is 

measured either in local  time   (or age),  x , since the actual last fail- 

rom ure epoch, t., , or in global   (or clock)   time, t " t- , + x , £ 

* th the test origin.  A failure-rate law for the j  interval would then be 

completely determined if we could specify the probability of the next failure 

epoch occurring in dx as a function of the entire past history  of the point 

process, i.e., as a function of, say,  (x ,x«, ..., x 1;x) , or, of 

Our first assumption will be that the starting epoch of an interval 

is a surrogate for all previous failure history of the system;  i.e., for 

the j  interval,  x.  and t.  are statistically deoendent only on t. , = 
3 2 J      v ' J-l 

t . , and not on the other failure epochs (and not upon the index j). 

Physically, this means that the global time t.   describes sufficiently 

all of the engineering changes, the characteristics of the replacement 

items, the procedural changes that have been incorporated into the system 

to date, etc. Mathematically, we are specifying a failure rate function, 

** 
f , such that: 

Pr (x e (x,x+dx] | x. > x ; x ,x0, ... x  ;t> 
(2.1)        J J       1 ^      j-l 

= f(x;t I t , • x. + x. + ... + x ,)dx 

for (j = 1,2, . ..) , (0 <_ x <_ x.) , and (t. , < t <_ t ) . For simplicity 

in the sequel, we will move freely between t and x • t - t. , whenever 

the interval index j  is clear from the context. 

* 
Time and age can also be measured in production time  units, or in actual 
system operational  time.     This raises certain measurement difficulties, 
but no conceptual ones. 

** 
We emphasize the case where the random variables are continuous, but 
discrete cases follow directly, with only minor modifications. 
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The second assumption we shall make is that the age-dependent and 

time-dependent failure mechanisms of the system are statistically in- 

dependent,  e.g., that the failure rate function is the sum of two terms, 

so that for interval j , 

(2.2) f(x;t | t  ) = <f>g(t | t x) + ü)h(x) . 

ES 

Here $ and u are two parameters to be estimated, and g and h are 

two prototypical growth forms,  assumed known from previous experience, 

h is the usual age-dependent hazard function,  while g is the 

learning-curve  itself, which is decreasing in some given manner as t 

increases. 

This assumption is reasonable if we think of a single unreliable 

item being replaced, with the "wear-out" hazard h being a property 

of this item, while g reflects independent improvement of the rest 

of the system or the operational environment.  If the system consists 

of many unreliable terms with exponential lifetimes  (h(x) • 1) , then 

this model also applies, if the reliability growth provides independent 

environmental improvement, or if it rectifies or removes certain of the 

unreliable elements [5], [IS].  Further development or validation of 

(2.2) under more complex system assumptions is needed. 

. . -    •  •-   .   M-,    •••   -•   -    .•• .-...-      •, J-«'-   -•   -    - 



3.  ALTERNATE FORMULATIONS:  "AS OPERATED" AND "AS PRODUCED" GROWTH MODELS 

The choice of the learning curve function,  g , depends upon further 

assumptions about the nature of the improvements made upon the system 

over time. We shall consider two special cases which we believe bracket 

the possibilities to be found in practice. 

Type I ("as operated") models  refer co those situations in which 

the reliability growth is either due to improvements in environmental 

conditions (cooling, shock insulation, power supplies, support equipment 

etc.), continuing changes in operational procedure;, or when any design 

improvements on current production models can be retrofitted on existing 

systems in the field or on test.  In this case, we assume that a one- 

dimensional prototypical learning curve g(t)  is known, and that in 

(2.2): 

(3.11)     g(t | t. x) = g(t) , (t._i  < t < t. = tj_j_ + x ) . 

Most models in the literature are of this type. 

Type II ("as produced") models  will refer to the other extreme in 

which reliability improvements are built into each system only during the 

production-installation process, and thus do not affect equipment already 

in the field or on test. As above, there is an underlying learning curve 

g(t) , but for the j  interval, only the value of the function at the 

starting epoch is of interest, and 

(3.Ill)       g(t | t.j)  - «(tj^)    (tj^ < t < t ) 

is a constant over this lifetime interval.  Models of this type were 

introduced in [4], [5], [18]. Note that a Duane growth curve (see below) 

has some technical difficulty in the first interval of model II. 

-. •  •.-.-.-. .•.•.-.-.".-."•.•.-.-.-.,•.•-.-.•.-..•.•.•.-.•.-.•.• • -.-.•.•.-...-.-.• • 
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One can easily imagine combinations of these two types of models, 

as when retrofitting engineering changes gives less improvement when 

applied to used items.  However, Models I and II are clearly good 

approximations to each other when g is a slowly varying function, 

as compared to the random lifetimes, so that, in many situations, we 

may not expect these models to give dramatically different results. 

Figure 2 shows how the actual failure curves for the two different models 

would be constructed. 

*• ."•• 

.• .• - -• .- .• -  •. • 

- ••- - - 
_••-• .'.-:.V. •••'.•..••',:_..••...••:.'•-... 

. • . -. i . •.    •.•.-.•.•-.•.•.•.. .•.•.•-..-.•. . . •. 



•S.- i,' «.**.* ••*••* -.* -•' • -•.»." '. «." .<•..".• v. J,\ »._•.'-. »•./.••, -"._••.~~."^.—:'-.«-.••• :_•""". •". -" •" •• -". -". 

1 
f(t,x 

<t>g(t) 
Vl> 

AGE-DEPENDENT HAZARD FUNCTION 

MODEL II "AS PRODUCED" 

UNDERLYING RELIABILITY 
GROWTH LEARNING CURVE 

MODEL I "AS OPERATED" 

LSI 

-X—K- -^ t 

FIGURE 2. Components of failure rates, ooh and <|>g , and 
resulting total failure rates, f , of Models I 
and II for a particular realization. 
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CHOICE OF GROWTH FUNCTIONS 

i «]l • 11", •   • • ••• i-,••...•• p«   • " i ',•»   •   • <t • _ • ••   i. ,• •' 

in which    f(x,t   |   t       )  = g(t) 

There remains the problem of specifying the form of the learning 

curve,  g .  Much of the current literature specifies Crow's adaptation 

of a deterministic learning curve of Duane [1], [7], [8], [9], [10], [17], 

Y-l 
kt   , with the internal parameter 

Y < 1 for reliability growth.  The resulting point process is referred 

to as a Weibull process.  In our view, this model is incomplete because 

there is no residual failure effect  (to • 0)  at  t •* °° .  Also, this curve 

"blows up" for t = 0 , which makes the normalizations described below 

in Sections 5 and 9 somewhat awkward.  We would prefer to use a more tract- 

—Yt 
able form, such as g(t) = e   , for example.  However, much practical 

work remains in the selection and justification of a particular learning 

curve, since it seems extremely difficult to identify the correct form 

of g with the usual amounts of data available. 

The "hidden" shape parameter, Y » in any g is also a problem. 

Normally, one would like to leave this and similar parameters to be estimated 

by the procedure described below.  However, these parameters are quite 

non-linear in their effect on the likelihood, and in the few numerical 

trials we have made, are extremely sensitive to small variations in the 

data. 

It is also clear that nothing prohibits us for specifying a g which 

changes value only at certain pre-defined points in time, rather than con- 

tinuously.  But perhaps such situations are better handled through the 

discrete structural parameter models described in Section 1. 

I - ; 
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5.  DISTRIBUTIONS AND DATA LIKELIHOODS 

The random lifetimes, x-.x», ... , generated by (2.2) are, in general, 

dependent and not identically distributed. However, given t    (and <j> 

and ü)) the conditional distribution of x  is found from the relation 

(5.1)        f(t,x | tj^) m .A.ln  PC(X | t*xi+,u)   , 

where P  is the complementary distribution function defined by 

(5.2)       PC(x | t,_]_;••«) - Pr {x > x | t  ;$,u) , 

for  (j - 1,2, ...)  (x >_ 0)  and  (t = t   + x) .  The density of x  is 

just the negative derivative of P 

Let G(t)  and H(x) be the integrals of the growth and age hazard 

components, measured from the test origin and the currer.c interval origin, 

respectively: 

r x 

(5.3) G(t) =J g(u)du ; H(x) - J h(w)dw . 

0 0 

(As described above, this raises minor technical difficulties in the Duane 

model in which G(0)  is undefined.) Then it is straightforward that for 

model type I: 

(5.41)  PC(x | t  ;<fr,u) - exp {-<|>[G(t) - G(t  )] - wH(x)} , 

whereas for type III 

1 urn 
H •.'. • 

(5.411)     PC(x | tj_1;*,co) - exp {-<frxg(t  ) - wH(x)} , 
• - • 

•.-•;•, 

-.-'-: 
•.-"-. • 

-j           remembering always that t • t. , + x in the current interval j • 

*** **•*•*•*•* •«• * " * " • "•••-«--"•*** •-.-** t * •- * " -"•'•"  -.".*.--.*-•'•*-•-'•.•-•-".   .•,•,•-'.• •»•-'.•  • .-.•.-.• 
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Having developed the law for each interval of our point process, we 

can now consider specific testing protocols, calculate appropriate data 

likelihoods, and proceed with the estimation of <j> , w , and any hidden 

parameters in g .  Remember that we have assumed and h are known. 

Suppose there is one system on test, as in Figure 1, and the test 

is stopped at some predetermined global time t = T  ("time-truncated"). 

During  (0,T] , there will have been a random number n(T) = sup {n | t < T} 

of complete lifetimes, x-.x», ..., x~, . , together with the  (n(T)+l) 

;e 

data, V  ,  from our point process will then be 

st 

"in progress" lifetime with current age x = T - t-,T.. .  The appropriate 

(5.5) V  = {n;T;x ,x x } 
i /      n 

The likelihood is: 

(5.6)  L(<|>,w | V)  = n  [<(>g,(P) + ah (P)] exp {-<|>G(P) - u,H(P)} , 
j=l   J       J 

where for both models I and II: 

- ' 

• 

\ i -** • 

• • "•     1 

r-'.'-' 

''. •"'.•' 

"•"-"•"0 

(5.7) 
n 

h,(P) = h(x.) ; H(V)  = V H(xJ + H(T - t ) 
J      J        j=l   j 

H    is called the "total-Q-on-test" in [12]. 

The learning curve data components depend on the model type; for 

growth "as operated": 

(5.81) gj(P) = g(tj) ; G(V)  - G(T) ; 

while for growth "as produced": 

•Vf« 
1 . —• 

. • 

-.• 

*>- '•- •-'- »-• -  - --•-••->••-••-«•-• -• '-• - '-• «r-"•••'.•- .-.".--".• .•-'.-'. -'.•.  -*«*- . - , 
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(5.811)  g .j(P) = «(tj^) ; G(V) = I   x g(t ) + (T-tn)g(tn) 

It is clear that these components are quite close for slowly varying g . 

If observations are stopped at the n  failure epoch ("failure truncated"), 

the above formula still apply, with T = t 

.•_.-• • •.• 

' - . '•••*-.• ••• •-•"•-•O"--' V v-'-.-. «u- <••'. _-V: •^:V-:<.-.\'".. •\\^-\-\\^: .: .•.'•.'•:. --•-.. ...'-».- - -• - -• -• -•   '-» - 
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6.  MAXIMUM-LIKELIHOOD ESTIMATION 

The classical maximum-likelihood estimates $ and w follow directly 

from (5.6); we get an implicit solution through the two equations: 

(6.1) 
j=l <|>g + wh 

-«S  I 
5     8; 

= G 
j=l <|>g + wh 

If g also contains an internal parameter y   , then we have at Y = Y 

n 
(6.2) 3Y 

j=l 4>g + ojh 

3G(Y) 
3Y 

in an obvious extension of notation.  For computational convenience, we 

record also the second derivatives of £n-likelihood at the maximum likeli- 

hood point  (<P,üJ,Y) : 

(6.3) 3    in L i y 
n    (g.)k(h )2_k 

— ;     (k = 0,1,2) 
3<J>k3co2~k        j-1  (<j>g    + uh ) 

(6.4) 

9g, 
1  3^ £n L i_ix. n        h. 

I    • 
j-1  (<f>g    + uh ) 

1  3     £n I 
1     3W3Y 

(6.5) 3    fcn L 

3,
2 4+ I 

3Y 

n 
I 

J-1 

(•8j • *,) ft?." • <£)' 
(*gj  + ^hj)2 

Because these derivatives are evaluated at [#»M>Y] . they are also equal 

to L        times the corresponding derivatives of L   . 

.*• '•-"••" •• .V 

'. .-    ' .V 
* •" -" - •"- •-•-•-•- •'- -•- •-*- .'- »'-'- --'-.- .'- .'- ."-1 - .•- ^...-. J .V', 
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7.  OTHER TESTING PROTOCOLS 

The results of Section 6 can be e.is.My adapted to other testing 

arrangements.  For example, suppose that S systems were put on test 

at the same global time origin, and operated for the same total interval 

T .  Then, system i would report n.  failures, with completed lifetimes 

x ...x.» x   , and the total data set corresponding to (5.5) would 

be: 

(7.1) f>- ^U |ni;T;xil,xi2, ..., x^j 

with (5.7) replaced by; 

I 

n. 

(7.2)   htj(P) = h(xi:j) ; H±(V)   = I    H(xtj) + H/T - t^ \ 

g±.(P)  and G (P) are defined analogously to (5.81) or (5.811); then 

the total L(V)     is the product of terms like (5.6) for each system 

It follows that the maximum likelihood estimator formulae (6.1) and 

(6.2) become: 

S  ni 
(7-3)   I      I ij 

S  ni 

i=l j»l *g  + uh 
I H± I   I     I 

g ii 
1=1 i=l j=l <)>g  + uh 1-1 x 

and 

(7.4) 
\    ÜüfÜ 

it 
S 
I  I 

i«l J-l *g  + uh 

S  3G.(Y) 
I 

i-1 8Y 

_-.. • -.-•.-•-.--.-.-•-•  ...•.- _....... 

.'-. - •.-.-. .••.•.-.•-.- .-•.% .•- -• . -. • .• .> . -,-.  ... 

..•-.-•.-. . - --•  - •.-••-:•-'•-...•• -..-. •-•••-• .••-••v- ^ i- -M - ' - • 
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A variety of other testing protocols can easily be incorporated into 

similar formulae, including different test origins and terminations, -"" 

missing intervals, etc.; the stopping time(s) may also depend upon the f/4 

data outcome (see, e.g., [12], [13]). 

V-V 

.V .-.  - 

--• -•••.•• .•_•  . •  . — ..--•.-...•.-', _._. • • •>- •- - -•-•-• 
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8.  CONSTANT AGE HAZARD 

It is interesting to note that only the ratios g^/h.  entered into 

the computations (6.1) - (6.5); in effect, one could switch to an operational 

time  and analyze an equivalent model in which h(x) 5 1 for all x . 

This constant age-hazard is important in ordinary reliability applica- 

tions, where it corresponds to exponential lifetimes and the stationary 

Poisson failure process.  It is of interest to see what happens in the 

corresponding reliability growth model, with h. • 1 for all i , and 

H - t  . 

Models of type I then give rise to time-varying (inhomogeneous) 

Poisson processes, with intensity parameter 

(8.1) A(t) = $g(t) + u . 

The distribution of the number of failures in  (0,T]  is Poisson: 

(8.2) Pr (fi(T) = n | +,c») = [*G(T) + o)T]ne"[*G(T)+ü,T]/n! 

from which we can get the law of n  failure epoch through the equivalence 

[t < T] •*•» [n(T) > n] .  The mean and variance of n(T) are, of course, 
n — — 

ij)G(T) + u)T . Moments of the lifetimes {x } , on the other hand, have 

no simple form in the general case; however, the concept of local mean 

life  at t , introduced in [4], and defined as: 

(8.3) Vi(t) - 1/A(t) = Ug(t) + ü)]"1 , 

has the interpretation of mean duration until the next failure if no 

further change occurs in    g(t)  (or if it is slowly varying). Of course, 

if g(t) •*" 0 as t * • i successive lifetimes approach independent, 

exponentially-distributed random variables with mean life u(°°) • M ' • 

• •---.- 

•• -- 

. •. *.' 

.*  * "-* '.* ".-• V ".• '_* "_* "-* "JH •-•»"••."•'•••-••'- 

L-V'-'.'--.'--.^'.''-.-.'lV Jw'lvlv--. 1. --.'-•. -.'2:."1-.V--^V.--:- •-•>-• •-'•--"-- •-, , _ . ...«•. Li 1J -.,"•< J -- . rf. .- V '• •• A. 
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."_ v • -» .".~^—* ". ." "".".'" "> ".•"' "7 ".'"!• ••; 

Models of type II with h(x) = 1 , on the other hand, give rise to 

independent, exponentially-distributed random lifetimes for every 

,th 
interval; the j  lifetime has mean: 

E{ x  | t  ;<j),cü} = U(t._j) = [*g(t x) + u] 
-1 

• : w< 

Note that this point process is not,  however, a Poisson process, since 

the intensity parameter jumps to its new value only at a failure epoch, 

and not continuously over time. Hence, there is no simple form for the 

distribution of n(t) . 

s* 

k ."• ."-« • .'• .'• ."• , - -•• .'•.'- ."- . 
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9.  BAYESIAN ESTIMATION 

Because most product development programs involve systems which are 

evolutions of previous ones, it makes sense to quantify this engineering 

experience and "know-how" by using Bayesian estimation procedures.  There 

appear to be three major ways in which this approach might be applied 

in reliability growth. 

A. Full Bayesian Estimation 

In a full Bayesian analysis, the likelihood (5.6) (or an extended 

version developed in Section 7) is used together with a joint prior density 

p(4>,u)  in the usual Bayes' formula to find the posterior joint density: 

(9.1) p(+,U | V)  - U*'\lV)li*'a),m   • rvT»  i     normalization (V) 

There is probably little to be gained by attempting an analytic solution 

to this equation through the use of natural conjugate priors.  Even if 

p(<t>,ii>)  factored into independent gamma densities on <J> and u , it can 

be seen from (5.8) that the posterior-to-date density would have n 

terms, corresponding to different priors jra (j = 0,1, ..., n) . 

If, in addition to <j> and u , a hidden parameter in g or h 

must be estimated, this leads to a very non-exponential-type likelihood, 

for which no natural conjugate prior exists. 

Thus, in general, it seems that useful full Bayesian solutions of 

(9.1) would require 2- or 3-dimensional numerical integration. 

B. Multinormal Approximation 

If the prior and the likelihood are appropriately bell-shaped 

functions of u> and $   , then one can make multinormal approximations 
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of the densities, and then carry out an exact calculation using (9.1). y~;.\ 

The parameters for the likelihood would have to be calculated numerically "-• v 

•,,m 
using the formulas in Section 6; the multinormal prior would require 

• '/.'••. 

eliciting the prior means and covariances of OJ and 4> from engineering \\. 

personnel, or examining failure rate records of related development ;,% 
-•M 

programs.  At the very least, this requires knowing how much data and 

prior confidence is needed to obtain unimodal densities of the correct 

form. '•'/•'; 

C.  Conditional Likelihood 

The estimation problem is greatly simplified if we can assume that 

only one parameter is imprecisely known. A possible situation in which 

this might occur is where the shape of the learning curve  and the initial 

failure rate    f(0,0 | 0) = a are well-known as testing begins.  Assuming 

that the prototypical failure functions are normalized so that h(0) = 

g(0 | 0) = 1 , we set a  = <f> + u , and use the one-dimensional likelihood 

and prior in: 

(9.2) p(U i t?,co = L
<" i ypt* ia) 

r
  '  '      normalization 

S  ni (   S        S        ) 
(9.3)  L(u> | V,a)  = n  n  (ag,,+ o)(h., -g,,)) expj-a jj G-u I     (H   -G.)\ 

i=l j=l   1J    1J   2 (  i=l X   i=l  *  x ) 

Thus, attention is shifted to estimation of the ultimate failure rate, 

(i) , which is usually the performance parameter of greatest interest. 

It shall be remembered though, that a  (and y)     are assumed known. 

For instance, Figure 3 shows a typical prior density p(w | a) , with 

experience indicating a most likely improvement of about 40% from the 

initial failure rate a , but with allowances being made for the possi- 

bility of other outcomes, even to > a     (reliability loss).  This prior 

• •• -;:;;:>::;: :;:v:-;:•;-••" '    :-••'• •:•• • :>;•;".; 
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would then be multiplied by L(co | P,a)  in the usual way to give the 

(unnormalized) posterior p(u | V,a)   .  The point estimate of to would 

then depend upon the loss function selected. 

— Ü) PA 

FIGURE 3.  Illustration of Bayes' Law for Conditional 
Likelihood Approach. 

> -' • 

:3üj 

:•->: 

• • -.      • • • - • 
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10.  NUMERICAL TRIALS - EXPONENTIAL GROWTH FUNCTION j£\ 

A.  Random Variates ~~ 

To illustrate the numerical difficulties associated with reliability ."-!-' 

growth models, a series of random variates were generated using constant *. 

hazard rate, an exponential growth function (assuming Model I is operating), 

and a generous set of parameters in which a significant decrease in failure 

rate occurs after about 15-20 failures have occurred in each realization. 

More specifically, pseudo random lifetimes {x  ; i = 1,2, ..., 32 ; 

j = 1,2, ..., 80} were generated using: 

h(x) =1 a - 1.0 ; u = 0.2  (0 - 0.8) 

g(t) = e Yt        Y = 0.05 . 

This gives a time-varying Poisson process in which the failure rate decreases 

from an initial rate of 1.0 towards an ultimate rate of 0.2, with a time ~;3 

constant of y      =20 time units. 

Figure A shows the resulting 32 point process realizations over the \" 

range 0 <_ T <_ 40 , corresponding to zero to two time constants, which is L^* 

probably the range of practical interest, as only 13.5% of the growth is 

unobserved at T = 40 .  (Because of quantization in the printing of 

Figure 4, failures that are closer together than 0.5 time unit show as -.js. 

only one event; for example, in realization #1, the failures near T = 2.5 , 

5.0 , and 14.5 are actually double events.)  Even with the high variability 

of the Poisson, the strong reduction in failure rate with time can be 

visually inferred. 

The average number of events in one realization follows the law: 

M(t) = E{n(t)} = 0.2t + 16(1 - e~-05t) . £>• 

.•.••'••.- ..-.. • . .•• •• _• .•••.•-• 
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Figure 5 is intended to show how this form is better and better approxi- 

mated by I  n (T)/S , as the number of realizations,  S , is increased. __ 

First of all, for S = 1  (realization #1) , this sample function is 

just the usual unit-step counting function, with jumps at the t  ; it 

starts out rather well, but then lags behind the mean, beginning with £*, 

the rather long 8  lifetime. When the second realization is included, 

making S • 2 , the jumps in the sample function are of height 1/2 , and 

occur at failure epochs {t-, ; t_.} of both systems on test.  The result- 

ing curve is somewhat smoother, but of course still contains the bias 

of the results from system #1. Keeping in mind the jagged nature of the 

actual sample functions, the remaining curves show how closely the sample 

function approaches M(t)  for S = A,8,16 , and 32 , for T = 0(5)40 . 

The S"32 curve deviates from M(t) by less than 0.26 units. 

B.  Maximum-Likelihood Estimates 

Maximum-likelihood estimates of w were then evaluated using the 

(9.3) version of the equations of (7.3), that is: 

S VT)    h.. - g.. S 
(10.1)     I      I        Ü U I    (H    -G) 

i-1 5-1  agi:j + £(h±j - 8lj)   i=l 

In our case, of course, h  = 1 , g  • exp (-yt..) , and the RHS 

is just S[T - G(T)] .  These values were obtained through an interactive 

numerical search over successively finer values of w ; when the maximiz- 

ing a) was obtained to within 0.01, parabolic interpolation using three 

neighboring values of ID was used to estimate the final to . 

'• \•'<•':'.-:'.-:'.-'•--.•--.• '    ' ''.-:•.-"--•:. ' . ' -     ' 
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For small testing intervals,  T , the formal solution of (10.1) is 
•'. 

often negative; these values have been retained in Figures 6, 7, and 8, 

even though the likelihood is then monotone decreasing over  (O,00) , 

and theoretically we should set ui = 0 . However, negative values of 

us give us some idea of the resulting steepness of the likelihood near 

zero, as well as the algebraic instability of (10.1) for small T . 

However, the negative values of ui are not especially exact, as they 

were determined by parabolic extrapolation from u> = 0, .01, and 0.2 . 

Figure 6 illustrates the behaviour of UJ(T) as a function of T 

for S = 1  (realization //l). Notice the typical behaviour of point process 

estimators; jumps in value occur at the failure epochs, followed by gradual 

decreases (with decreasing slopes as the number of samples increases) as 

the testing interval increases without an intervening failure.  For T 

from 0 to tin , u) is undefined; from t--  to about T = 7 , it shows 

reliability decay     (w > 1) , and from T = 7.5 to about 27.5, there are 

intervals of negative values.  Even though we know ui(T) •* to almost surely 

as !-»••, realization //l is still estimating a value of u> less than 

0.01 at T = 50  (YT = 2.5) . 

Different results will of course be obtained from different realizations. 

Figure 7 compares the results obtained using the first four realizations. 

Only selected values of T • 5(5)50 are evaluated; the actual estimator 

behaviour between these points looks like Figure 6.  Here we see the 

large variability in behaviour between samples, especially for YT <  1.0. 

Samples //2, #3, //A are closer to the true o> at YT = 2.5 than #1, but 

there is still some variability left at this point, where the numbers of 

.amples in each realization are 19, 19, 28, and 26, respectively. 

::-;:-;:;.;-\v;-v v •. -'. %••:..•'.;-;.;:.;-:-;-:.;,•;••;.;•:•;.;;. :, . ;. :-;-;.--:.'•-. • v • • ;.'••; 
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Clearly, the estimator will be more stable if we increase S , the 

number of systems on test.  Figure 8 shows to(T) versus T = 5(5)50 

for S = 2,4,8,16 , and 32 .  S = 2 still has a large region of negative 

results (because w of both realizations #1 and #2 in Figure 7 are 

negative), but S • 4 and higher are relatively stable after T = 20 

(yT =1.0) .  Remember that the complete behaviour between selected T 

should look more like Figure 6, but that with increasing S , the jumps 

will be smaller, and will occur more often.  Note also that the vertical 

scale of Figure 8 is finer than that of Figures 6 and 7, so that the 

relative stability is better than it appears.  The numbers of samples at 

T = 50 are 38, 92, 195, 395 , and 787 for S = 2,4,8,16 , and 32 , 

respectively. 

C.  Data Information Estimates 

For the cases in which an internal maximum occurs in the likelihood, 

it is convenient to have a measure of how sharp this maximum is. A con- 

venient choice is the (Fisher)  Information,  defined as: 

(10.2) I = Ep
2*° M» I *> I fij . 

If  I as a function of w is approximated by a normal curve about GO , 

then I is approximately the precision  (inverse variance) of the approxi- 

mation.  Estimates of the information,  I , were obtained during the 

course of the computations of u> ; if the formal solution of (10.1) gave 

negative values,  I was computed at these maxima, but, of course, the 

information then has no useful physical interpretation. 

Figure 9 shows the values of I obtained at selected values of 

T " 5(5)50 for different values of S . Points with negative u are 
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FIGURE 9.  Data information estimator,  I , for four different 
realizations of S - 1 , and for S - 2,4,8,16 , and 32, 
for selected testing intervals, T .  (.Straight lines added 
for continuity.) 
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indicated differently than those with positive Ul .  For S = 1 , the 

first four realizations lead to quite different results (and, of course, 

the actual curve versus T is discontinuous).  However, as  S  increases, 

we may expect the sampling variability to decrease, and, in fact, the 

curves for S greater than four are quite smooth, and more stable than 

those for <_• . Note particularly that the curves appear almost to be the 

same curve, displaced by the same amount as S is doubled. 

D.  Data Likelihoods 

To give some idea what the different precisions mean for our example, 

Figure 10 shows the likelihood as a function of _ , p(P | _) = L(_ | P) , 

for T • 20  (YT =1.0) , and various values of  S .  For  S = 1 and  2 , 

the formal solution for oi gives negative values, and hence the likelihood 

is monotone decreasing over  (0,») ; with different realizations chosen, 

different results might have been obtained.  For S = 4 and above, 

internal to are obtained, and the information I  increases from about 24 

to 196, as the likelihoods become sharper. For S = 2 and higher, there 

is practically no likelihood that w is greater than 1.0 (reliability 

decay); for S = 8 and higher, there is practically no chance that u 

is larger than 0.7.  However, in all cases, the instability of the point 

estimate u> is clearly shown, and there is still a rather large confidence 

region, even for S * 32  (455 samples). 
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11.  ANALYTIC RESULTS ON ESTIMATORS 

Although the numerical results of the last section were enlightening, 

they were obtained for particular parameter values, and a particular 

choice of learning cm. /e form.  It is desirable to also ask what addi- 

tional results can be obtained analytically, apart from the well-known 

result that co(T) •*• m    almost surely, as T -*• • . Unfortunately, the 

complicated form of (10.1) permits only a few explicit results. 

A.  Initial Behaviour for S = 1 

The poor initial behaviour of the single-system estimators can be 

explained by noting first that, for T < t - , no estimators exist.  For 

t  <_ T < t1? , (10.1) has only one term, so that: "11 '12 

(11.1)       i(T) = («j - 6X) 
1 -  agn<hu - gu)"1 

and 

(11.2) I(T) = (Hx - 61)' 

In particular, for the forms assumed in the example, and assuming Yt,, 

is small, we find: 

(11.1') 

(11.2') 

t»(T) « (2/YT
z) - a(l/Ytu) , 

i(T) as YV/4 . 

This means that the initial MLE estimator,  "(t.,) , has the following 

sensitivity to the first lifetime: 

'.;-*. 
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if cttn > 2 , then w(t ) < 0 ; 

(11.3)     if 2(1 - (2Y/OI)) < at,- < 2 , then 0 < »(t-,) < a ; 

and if at  < 2(1 - (2y/a)) ,    then ai(t -) > a 

•-.'•: 

(assuming that y is small compared to a).  Since only the middle estimate 

corresponds to reliability growth, this means that the initial estimates of 

u are likely to be pathological ones, since the range of allowed t....  is 

small (1.9 < t.. < 2.0 in our example). 

The estimator of the precision, on the other hand, is a smooth function 

of T , and indicates how quickly precision builds up after T > t.. , un- 

til the next discontinuity at T = t. „ . 

B.  Initial Behavior for Arbitrary S 

The above discussion can be extended to an arbitrary number of systems, 

provided we limit our discussion to values of T between the first failure 

to occur, 

tA1 • min (t11»
t2i» ••»» csi^ ' 

and the second to occur.  This will occur, on the average, earlier with 

increasing S , so the approximations are even better.  (11.1) and (11.2) 

are first modified by replacing H - G.  by the sums £ C« " G.)  ana 

h11  and gn  become h#1  and g^.. , in an obvious notation.  Then 

(11.1) and (11.2) become: 

(11.1")                                «(T) « (2/SyT2)   - a(l/ytn)   , 

(11.2")                                              I(T) a S
2

Y
2

T
4
/4   . 
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Not only is atÄ1 <   (2/S)  the new requirement that  w(tA )  be positive, 

the other bound becomes:  (2/S)(1 - (2y/a3)) , thus widening,   relatively, 

the gap in which tÄ1  must fall to give an initial estimate corresponding 

to reliability growth!  The quadratic dependence of  I  on  S  is also 

reassuring. 

Unfortunately, discussion of the next interval of  T , beyond the 

second failure, already leads to quadratic expressions for  w(T) . 

C.  Average Behavior for yT    Small and  S Large '''•] 

Before giving the results of this section, let us recall what kind of 

results we would get if we were estimating the failure rate X of a 

stationary Poisson process,  w-.th S systems on test for T time periods. 

The maximum likelihood estimator of  X  is just  X(T) = N(T)/ST , and it 

is immediate that this estimator is unbiased for all T , since E{X(T)} = 

SM(T)/ST = X  for all T .  Furthermore,  E{I(T)} = SM(T) = SXT , so that 

the average amount of precision in any experiment is proportional to  ST , 

the total-time-on-test. 

To obtain similar results using (10.1), using h(t) = 1 but arbitrary 

g(t) , we first of all set T small enough so that the probability of more 

than one failure per system in  (0,T]  is negligible compared to the prob- 

ability of zero or one failure.  If 

<• 

' - V- 1 

• . - 

(11.A)   g(t) - 1 - Yjt + Y2t
2/2 - Y3t

3/6 + ...   (t •» 0) , 

this means that Y-.T << 1 , and the other y       do not increase explosively 

(which is certainly true if  g(t)  is decreasingly slowly and monotonically). 

For g(t) = exp (-yt) , the Yj = Y  » and we require yT « 1 . « 
l ."ff 
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Letting t^t-, ..., t , ,  denote the random number of (first) 

failures which would be observed in such a case, we rewrite (10.1) as: 

. N(t)     1 - g(t ) 
(11.5)     T - G(T) = J    I 

k=l ag(tk) + cu(l - g(tk)) 

Now the t.  are independent, identically distributed random variables 

with the same distribution as the {t . | t  <, T} , that is, they have 

a normalized density with failure rate g(t)  that is approximated by (11.4) 

With a little bit of labor, we find the first two moments of these first 

failure epochs to be: 

a + (a - U)Y, 0 T 
E<VÄI 12S -T+0(T) 

(11.6) 

fU-V 
2 3 + o(r) 

Now let the number of systems on test get very large; then (11.5) becomes: 

1 - g(tk) 
T - G(T) = E^ }    almost surely as S + °° . 

|ag(tk) + «(1 - g(tk))f 

We now expand both sides of this equation in powers of T , using (11.4) 

2 
and (11.6), assuming that E{<D(T)} ^ UJ + w.T + 0(T ) . After some labor, 

we find that the first and second powers of T are trivially satisfied, 

but that from the third power we get: 

2 
(11.7)      E{w(T)} Ä a) - |^-+ 0(T)     (YXT « 1) 

I . - 
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This means that the maximum likelihood estimator is inconsistent  at 

small values of T—in fact, for the parameters of the numerical trials, 

to(T)  approaches to - 5.0 !  This gives us additional evidence as to 

the unsuitability of the maximum likelihood estimator. 

Using similar techniques, we can estimate the average information 

in the data for small T as: 

(11.8) 

2„,3 
Y T 

E{I(T)} a S -|^-+ 0(T4) (YjT « 1) 

Since the mean number of samples is of the order of SaT , this shows 

that the precision of the estimate is increasing strongly with increasing 

time-on-test T , not just proportionally to total-time-on-test  ST . 

For the data in the numerical trials, this estimate of precision 

3 
is ST /1200 .  Table I shows that this estimate is, in fact, rather good 

for yT £ 1.0 , and S ^ 4 , thus explaining the regularity observed in 

Figure 9.  Remember, however, that this refers to the second derivative of 

the £n-likelihood at a possibly negative to . 

T - 5 

T - 10 

T - 20 

T - 30 

S = 4 S = 8 S - 16 S -  32 

0.33  .^^ 
^-"0.42 

0.76^^ 
^^^0.83 

1.38   .^^ 
.^1.67 

2.86^^ 
^^3.33 

3.33 .^^ 
^^^3.33 

6.46^^ 
^^6.66 

12.9^-^ 
^^13.3 

24. k^^ 
^^"26.7 

10.5^^ 
^^11.3 

20.3^-^ 
^^22.5 

43.3>^ 
^^   45 

79.9^^^ 
.^^80.0 

24.0^-^ 
^-^26.7 

45.6^"^ 
.^53.5 

90.5^-^ 
^^ 107 

186    .^^ 
^^ 213 

TABLE I.  Data Information, I, for Different S and T, as 
Estimated from Numerical Trials (upper numbers) 
and from Approximation (11.8) (lower numbers). 
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D.  Bayesian Estimators 

This is perhaps a convenient point to re-emphasize that none of the 

above difficulties occur when using a Bayesian analysis.  Not only does 

(9.2) give the posterior-to-experiment distribution of w for any testing 

protocol, it follows then that, given a risk function, we can make point 

estimates of the parameters, or, if desired, can specify Bayesian tolerance 

regions for p(u> | V)   . If either the prior or the likelihood is approxi- 

mately normal, we can approximate the posterior-to-experiment mean,  E(ü | V)   , 

by a precision-weighted "credibility" [12] mixture of the prior mean,  E(ui) , 

and the MLE to ; the precision of this estimate is just the sum of the prior 

precision and the data information. And so on.  There are no conceptual 

difficulties with estimating more parameters, although, as indicated above, 

numerical integration would be necessary in most cases. 
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12.  CONCLUSIONS 

Before summarizing the results of this study, we recall the basic 

assumptions behind our learning-curve reliability growth model:  only 

the past epochs of failure may be used to estimate process parameters 

(although the modes of failure may be used in making the actual improve- 

ments); the date of the most recent failure of a system is a surrogate 

for all previous history of failures and modifications of that system, 

that is, the system state is Markovian at these epochs and depends only 

upon clock time and local age; and, the age and global time failure rate 

effects are separable, as in (2.2). 

Given this framework, we believe the following conclusions can be 

made: 

(1) A complete learning curve reliability growth model requires 

at least two parameters and two prototypical failure rate 

functions to describe the desired phenomenon; 

(2) If the learning-curve effect is continuous and slow, the exact 

form of the prototypical growth function g is probably not 

too important; there is also not much difference between the 

"as operated" and "as produced" specializations introduced 

in Section 3; 

Y-l 
(3) However, use of the Duane learning curve,  g(t) = Kt   , leads 

to technical difficulties in the problems of interest.  An ex- 

—Yt 
ponential learning curve, g(t) • e , avoids these difficulties, 

and is, moreover, suggested by certain defect removal models of 

software reliability growth; 

(4) In any case, the mathematical problems of finding the maximum- 

likelihood estimates of the parameters in (6.1), (6.2), (10.1), 
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or the data information (matrix) measure (6.3), (6.4), (6.5), 

(10.2), are similar for the different models and forms; 

(5) Limited computational experience in estimating the ultimate :- 

failure rate, UJ , under favourable assumptions shows that :• 

the maximum-likelihood estimator, OJ , is very unstable > 

during the early part of the learning curve  (y.T < 1) , 

especially for a small number S of systems on test.  In 

fact, for YfT small and S large, OJ is inconsistent, ;• 

usually much less than the true to , and negative; .- 

(6) The estimate of the data information measure, on the other •: 

hand, is remarkably stable. (11.8) is apparently valid as i 

a scaling law for y.T  <_ 1 and S >_ 4 , and can be used to 

estimate the precision of relatively non-informative testing [• 

protocols.  In any case, it is always better to increase T 3 

than to increase S in this region. 

Thus, the estimation of ultimate performance using classical estima- 

tion methods presents fundamentally difficult problems, unless testing I: 

periods are extended well into the learning curve, and a reasonable number 

of systems are placed on test.  The problem of simultaneous estimation of 
• 

several parameters will likely introduce additional inconsistencies and t 

instabilities. •[ 

Bayesian estimation procedures, on the other hand, use data from any 

testing protocol in a consistent and "friendly" manner, with the posterior- I 

to-testing density of u given directly from the likelihood and the prior. 

Point estimates or Bayesian tolerance regions can then be obtained through 

numerical integration, or through approximations, if either the prior or i 

the likelihood has high precision. We expect to see further development 
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of reliability growth procedures to place more emphasis upon the use 

of engineering experience obtained from related development testing 

programs. 
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